.:Welcome to My Blog:.

Saturday, June 18, 2016

Pemrograman CUDA GPU


CUDA(Compute Unified Device Architecture) adalah suatu skema yang dibuat oleh NVIDIA agar NVIDIA selaku GPU (Graphic Processing Unit) mampu melakukan komputasi tidak hanya untuk pengolahan grafis namun juga untuk tujuan umum. Jadi dengan adanya CUDA kita dapat memanfaatkan banyak prosesor dari NVIDIA untuk melakukan proses perhitungan ataunpun komputasi yang banyak.

Platform CUDA dapat diakses oleh pengembang perangkat lunak melalui library CUDA-accelerated , perintah kompiler (seperti OpenACC ), dan ekstensi untuk bahasa pemrograman standar industri, termasuk C, C++ dan Fortran . C / C++ programmer menggunakan CUDA C / C + +, yang disusun dengan "nvcc", NVIDIA LLVM berbasis C / C++ compiler, dan Fortran programmer dapat menggunakan 'CUDA Fortran', yang disusun dengan PGI CUDA Fortran compiler dari The Portland Grup. Selain library, arahan compiler, CUDA C / C++ dan CUDA Fortran, platform CUDA mendukung interface komputasi lainnya, termasuk Khronos Grup 's OpenCL , Microsoft DirectCompute , dan C++ AMP . Pemrograman pihak ketiga juga tersedia untuk Python , Perl , Fortran , Java , Ruby , Lua , Haskell, Matlab , IDL , dan dukungan asli di Mathematica.

GPU dalah sebuah processor khusus untuk memepercepat dan mengubah memori untuk mempercepat pemrosesan gambar. GPU ini sendiri biasanya berada di dalam graphic card komputer ataupun laptop
Dalam permainan komputer industri, GPU yang digunakan tidak hanya untuk rendering grafis tetapi juga dalam perhitungan fisika permainan (efek fisik seperti puing-puing, asap, api, cairan), contoh termasuk PhysX dan Bullet . CUDA juga telah digunakan untuk mempercepat aplikasi non-grafis dalam biologi komputasi , kriptografi dan bidang lainnya oleh urutan besarnya atau lebih.

CUDA memiliki beberapa keunggulan dibandingkan tradisional perhitungan tujuan umum pada GPU (GPGPU) menggunakan API grafis:
1.       Tersebar membaca - kode dapat membaca dari alamat sewenang-wenang dalam memori.
2.       Memori bersama - CUDA memperlihatkan cepat memori bersama wilayah (sampai 48KB per Multi-Processor) yang dapat dibagi di antara benang. Ini dapat digunakan sebagai cache dikelola pengguna, memungkinkan bandwidth yang lebih tinggi daripada yang mungkin menggunakan pencarian tekstur.
3.       Download lebih cepat dan readbacks ke dan dari GPU.
4.       Dukungan penuh untuk integer dan bitwise operasi, termasuk pencarian tekstur bulat.

Sumber :


Message Passing dan OpenMP


Message Passing merupakan sebuah bentuk dari komunikasi yang digunakan di komputasi paralel, OOT (Object Oriented Programming) atau Pemrograman Berbasis Objek dan komunikasi interproses. Massage Passing merupkan suatu teknik bagaimana mengatur suatu alur komunikasi messaging terhadap proses pada system. Message passing dalam ilmu komputer adalah suatu bentuk komunikasi yang digunakan dalam komputasi paralel , pemrograman-berorientasi objek , dan komunikasi interprocess. Objek didistribusikan dan metode sistem remote doa seperti ONC RPC , CORBA , Java RMI , DCOM , SOAP , . NET Remoting , CTO , QNX Neutrino RTOS , OpenBinder , D-Bus , Unison RTOS dan serupa pesan lewat sistem.

Paradigma Message passing yaitu :
1. Banyak contoh dari paradigma sekuensial dipertimbangkan bersama-sama.
2. Programmer membayangkan beberapa prosesor, masing-masing dengan memori, dan menulis sebuah program untuk berjalan pada setiap prosesor.
3. Proses berkomunikasi dengan mengirimkan pesan satu sama lain

MPI adalah sebuah standard pemrograman yang memungkinkan pemrogram untuk membuatsebuah aplikasi yang dapat dijalankan secara paralel. Proses yang dijalankan oleh sebuah aplikasi dapat dibagi untuk dikirimkan ke masing – masing compute node yang kemudian masing – masing compute node tersebut mengolah dan mengembalikan hasilnya ke komputer head node.Untuk merancang aplikasi paralel tentu membutuhkan banyak pertimbangan - pertimbangandiantaranya adalah latensi dari jaringan dan lama sebuah tugas dieksekusi oleh prosesor.

OpenMP merupakan API yang mendukung multi-platform berbagi memori multiprocessing pemrograman C , C + + , dan Fortran , pada kebanyakan arsitektur prosesor dan system operasi , termasuk Solaris , AIX , HP-UX , GNU / Linux , Mac OS X , dan Windows platform. Ini terdiri dari satu set perintah kompiler, rutinitas library, dan variable lingkungan yang mempengaruhi perilaku run-time. OpenMP dikelola oleh nirlaba teknologi konsorsium OpenMP Arsitektur Review Board (ARB atau OpenMP), bersama-sama didefinisikan oleh sekelompok perangkat keras komputer utama dan vendor perangkat lunak, termasuk AMD , IBM , Intel , Cray , HP , Fujitsu , Nvidia , NEC , Microsoft , Texas Instruments , Oracle Corporation , dan banyak lagi.

Sumber :


Thread Programming


Dalam pemrograman komputer, sebuah thread adalah informasi terkait dengan penggunaan sebuah program tunggal yang dapat menangani beberapa pengguna secara bersamaan. Dari program point-of-view, sebuah thread adalah informasi yang dibutuhkan untuk melayani satu pengguna individu atau permintaan layanan tertentu. Jika beberapa pengguna menggunakan program atau permintaan bersamaan dari program lain yang sedang terjadi, thread yang dibuat dan dipelihara untuk masing-masing proses. Thread memungkinkan program untuk mengetahui user sedang masuk didalam program secara bergantian dan akan kembali masuk atas nama pengguna yang berbeda.

Sebagian besar komputer hanya dapat mengeksekusi satu instruksi program pada satu waktu, tetapi karena mereka beroperasi begitu cepat, mereka muncul untuk menjalankan berbagai program dan melayani banyak pengguna secara bersamaan. Sistem operasi mengelola setiap program aplikasi dalam sistem PC (spreadsheet, pengolah kata, browser Web) sebagai tugas terpisah dan memungkinkan melihat dan mengontrol item pada daftar tugas. Jika program memulai permintaan I / O, seperti membaca file atau menulis ke printer, itu menciptakan thread. Data disimpan sebagai bagian dari thread yang memungkinkan program yang akan masuk kembali di tempat yang tepat pada saat operasi I / O selesai. Sementara itu, penggunaan bersamaan dari program diselenggarakan pada thread lainnya. Sebagian besar sistem operasi saat ini menyediakan dukungan untuk kedua multitasking dan multithreading. Mereka juga memungkinkan multithreading dalam proses program agar sistem tersebut disimpan dan  menciptakan proses baru untuk setiap thread.

Static Threading

Teknik ini biasa digunakan untuk komputer dengan chip multiprocessors dan jenis komputer shared-memory lainnya. Teknik ini memungkinkan thread berbagi memori yang tersedia, menggunakan program counter dan mengeksekusi program secara independen. Sistem operasi menempatkan satu thread pada prosesor dan menukarnya dengan thread lain yang hendak menggunakan prosesor itu.

Mekanisme ini terhitung lambat, karenanya disebut dengan static. Selain itu teknik ini tidak mudah diterapkan dan rentan kesalahan. Alasannya, pembagian pekerjaan yang dinamis di antara thread-thread menyebabkan load balancing-nya cukup rumit.

Dynamic Multithreading

Teknik ini merupakan pengembangan dari teknik sebelumnya yang bertujuan untuk kemudahan karena dengannya programmer tidak harus pusing dengan protokol komunikasi, load balancing, dan kerumitan lain yang ada pada static threading. Concurrency platform ini menyediakan scheduler yang melakukan load balacing secara otomatis. Walaupun platformnya masih dalam pengembangan namun secara umum mendukung dua fitur : nested parallelism dan parallel loops. Nested parallelism memungkinkan sebuah subroutine di-spawned (ditelurkan dalam jumlah banyak seperti telur katak) sehingga program utama tetap berjalan sementara subroutine menghitung hasilnya. Sedangkan parallel loops seperti halnya fungsi for namun memungkinkan iterasi loop dilakukan secara bersamaan.



Architectural Parallel Computer


Sistem komputer paralel dibedakan dari cara kerja memorinya menjadi shared memory dan distributed memory. Shared memory berarti memori tunggal diakses oleh satu atau lebih prosesor untuk menjalankan instruksi sedangkan distributed memory berarti setiap prosesor memiliki memori sendiri untuk menjalankan instruksi. Adapun komponen-komponen utama dari arsitektur komputer paralel cluster PC antara lain:
1.    Prosesor (CPU). Bagian paling penting dalam sistem, untuk multicore terdapat lebih dari satu core yang mengakses sebuah memori (shared memory).
2.    Memori. Bagian ini dapat diperinci lagi menjadi beberapa bagian penyusunnya seperti RAM, cache memory dan memori eksternal.
3.    Sistem Operasi. Software dasar untuk menjalankan sistem komputer.
4.    Cluster Middleware. Antarmuka antara hardware dan software.
5.    Programming Environment dan Software Tools. Software yang digunakan untuk pemrograman paralel termasuk software pendukungnya.
6.    User Interface. Software yang menjadi perantara hardware dengan user.
7.    Aplikasi. Software berisi program permasalahan yang akan diselesaikan.
8.    Jaringan. Penghubung satu PC (prosesor) dengan PC yang lain sehingga memungkinkan pemanfaatan sumberdaya secara simultan.

Menurut seorang Designer Processor, taksonomi Flynn, Arsitektur Komputer dibagi menjadi 4 bagian, yaitu
a.    SISD (Single Instruction, Single Data) adalah satu-satunya yang menggunakan arsitektur Von Neumann. Ini dikarenakan pada model ini hanya digunakan 1 processor saja. Oleh karena itu model ini bisa dikatakan sebagai model untuk komputasi tunggal. Sedangkan ketiga model lainnya merupakan komputasi paralel yang menggunakan beberapa processor.
b.    SIMD(Single Instruction, Multiple Data) menggunakan banyak processor dengan instruksi yang sama, namun setiap processor mengolah data yang berbeda. Misalnya processor 1 mengolah data dari deretan / urutan pertama hingga urutan ke 20, processor 2 mengolah data dari urutan 21 sampai urutan 40, begitu pun untuk processor-processor yang lain. Beberapa contoh komputer yang menggunakan model SIMD adalah ILLIAC IV, MasPar, Cray X-MP, Cray Y-MP, Thingking Machine CM-2 dan Cell Processor (GPU).
c.     MISD(Multiple Instruction, Single Data) menggunakan banyak processor dengan setiap processor menggunakan instruksi yang berbeda namun mengolah data yang sama. Hal ini merupakan kebalikan dari model SIMD.
d.    MIMD (Multiple Instruction, Multiple Data) menggunakan banyak processor dengan setiap processor memiliki instruksi yang berbeda dan mengolah data yang berbeda. Beberapa komputer yang menggunakan model MIMD adalah IBM POWER5, HP/Compaq AlphaServer, Intel IA32, AMD Opteron, Cray XT3 dan IBM BG/L.

Sumber :



Distributed Processing


Pemrosesan terdistribusi merupakan proses pendistribusian pengolahan paralel dalam pemrosesan paralel menggunakan beberapa mesin. Jadi, bisa di bilang kemampuan dari suatu komputer-komputer yang dijalankan secara bersamaan untuk memecahkan suatu masalah dengan proses yang cepat.
Kemampuan mengerjakan semua proses pengolahan data secara bersama antara komputer pusat dengan beberapa komputer yang lebih kecil dan saling dihubungkan melalui jalur komunikasi. Setiap komputer tersebut memiliki prosesor mandiri sehingga mampu mengolah sebagian data secara terpisah, kemudian hasil pengolahan tadi digabungkan menjadi satu penyelesaian total. Jika salah satu prosesor mengalami kegagalan atau masalah maka prosesor yang lain akan mengambil alih tugasnya.

Tipe lain dari komputasi paralel yang kadang-kadang disebut "didistribusikan" adalah gagasan dari sebuah komputer paralel cluster. Sebuah cluster akan banyak CPU terhubung melalui kecepatan tinggi koneksi ethernet ke hub sentral (Server) yang memberi masing-masing beberapa pekerjaan yang harus dilakukan. Metode cluster mirip dengan metode yang dijelaskan dalam paragraf di atas, kecuali bahwa semua CPU secara langsung terhubung ke server, dan satu-satunya tujuan mereka adalah untuk melakukan perhitungan yang diberikan kepada mereka.

Menurut Gustafson proses terdistribusi adalah sebuah komputasi paralel berjalan dengan menggunakan dua atau lebih mesin untuk mempercepat penyelesaian masalah dengan memperhatikan faktor eksternal, seperti kemampuan mesin dan kecepatan proses tiap-tiap mesin yang digunakan.
Contoh dari proses terdistribusi adalah ketika terdapat macam masalah diberikan pada satu master, maka dengan menggunakan komputer paralel masalah terseut akan terpecah menjadi beberapa bagian secara terdistribusi.

Parallel distributed computing dapat dibentuk dari :
a.       Ada : digunakan konsep pertemuan yang menggabungkan fitur RPC dan monitor.
b.      PVM (Parallel Virtual Machine) untuk mendukung workstation clusters
c.       MPI (Message-Passing Interface) programming GUI untuk parallel computers.

Sumber:




Parallel computation concept


Komputasi paralel merupakan salah satu teknik komputasi, dimana proses komputasinya dilakukan oleh beberapa resources ( komputer ) yang independen, secara bersamaan. Komputasi paralel biasanya diperlukan pada saat terjadinya pengolahan data dalam jumlah besar ( di industri keuangan, bioinformatika, dll ) atau dalam memenuhi proses komputasi 
yang sangat banyak. Selanjutnya, komputasi paralel ini juga dapat ditemui dalam kasus kalkulasi numerik dalam penyelesaian persamaan matematis di bidang fisika ( fisika komputasi ), kimia ( kimia komputasi ), dll.

Parallel computation adalah salah satu pemrograman komputer yang memungkinkan untuk melakukan eksekusi perintah secara bersamaan dan berbarengan dalam satu ataupun banyak prosesor di dalam sebuah CPU. Parallel computation sendiri berguna untuk meningkatkan performa komputer karena semakin banyak proses yang bisa dikerjakan secara bersamaan maka akan makin cepat.

Konsep paralel adalah sebuah kemampuan prosesor untuk melakukan sebuah tugas ataupun banyak tugas secara simultan ataupun bersamaan, dengan kata lain prosesor mampu melakukan satu ataupun banyak tugas dalam satu waktu. Dalam menyelesaikan suatu masalah, komputasi paralel memerlukan infrastruktur mesin paralel yang terdiri dari banyak komputer yang dihubungkan dengan jaringan dan mampu bekerja secara paralel.

Bila komputer yang digunakan secara bersamaan tersebut dilakukan oleh komputer-komputer terpisah yang terhubung dalam suatu jaringan komputer lebih sering istilah yang digunakan adalah sistem terdistribusi ( distributed computing ). Tujuan utama dari pemrograman paralel adalah untuk meningkatkan performa komputasi. Semakin banyak hal yang bisa dilakukan secara bersamaan ( dalam waktu yang sama ), semakin banyak pekerjaan yang bisa diselesaikan.

Sumber :




Text Widget

Copyright © Muhammad-Ridho94 | Powered by Blogger

Design by Anders Noren | Blogger Theme by NewBloggerThemes.com